CAMPUS AS A LIVING LABORATORY PERSPECTIVES FROM DALHOUSIE UNIVERSITY Tarah Wright (tarah.wright@dal.ca) #### HISTORY AND BACKGROUND - Since 2003, inspired by David Orr - Students from: Faculty of Science, College of Sustainability, and beyond... - Idea is to use the campus as a laboratory for demonstrating how to create sustainable communities. - Objectives: - Learn how to write a research proposal - Learn how to execute research - Help to make the university a more sustainable place #### THE PROCESS - Learning about campus greening issues - Project "speed dating" - Creating the proposal - Executing the research - Reporting on the research - Pecha Kucha - Final Report | Learning Outcome | Learning Sub-Outcome | |---|--| | Define and identify key elements
of environment and sustainability
issues on campus | Summarize the literature on the sustainability in higher education movement Develop familiarity with the policies and international agreements related to campus sustainability at Dalhousie University | | Develop effective research questions | Summarize the four key components to a research question Suggest appropriate research questions for campus sustainability issue identified by class | | Develop effective strategies for
approaching a research question | Describe and compare various research
paradigms: post-positivism, constructivism,
transformative, and pragmatic | | Learning
Outcome | Learning Sub-Outcome | |--|---| | Demonstrate
understanding of
typology of
research
objectives | Develop familiarity with Wallace's Wheel Suggest appropriate theoretical approaches to qualitative, quantitative and mixed methods Describe and compare exploratory (formulative), descriptive, relational (correlational), explanatory (causal) and transformative typologies | | Demonstrate
knowledge of
probabilistic and
non-probabilistic
approaches to
research projects | Define and compare probabilistic and non-probabilistic sampling Describe probabilistic sampling terminology (population, representativeness, units of analysis, sampling frame, sampling error) Describe probabilistic sampling methods (simple random, systematic with random start, stratified random, multistage cluster) Describe non-probabilistic sampling methods (convenience, purposive, snowball, quota) | | Learning Outcome | Learning Sub-Outcome | |---|--| | Demonstrate understanding of methods
to maintain rigour in scholarly research | Describe and apply the following terms:
reliability, validity, catalytic validity,
trustworthiness | | Demonstrate understanding of major interactive methods | Summarize the benefits and drawbacks of surveys, interviews, focus groups and observation Suggest when each interactive method is most appropriate | | Demonstrate ability to develop effective
questions for surveys, interviews and
focus groups | Summarize difference between open ended and closed/discrete questions Demonstrate understanding of different types of closed/discrete questions (single response, categorical response, rating scale, ranking, Likert-type rating scale, semantic differential) | | Learning Outcome | Learning Sub-Outcome | |--|---| | Develop understanding, and
demonstrate skills in
qualitative data analysis
techniques | Describe various coding techniques and approaches (i.e. a posteriori, a priori) Describe various data display techniques (graphs, matrices, flowcharts) Summarize and demonstrate ability to use the constant comparative method of coding | | Develop understanding, and
demonstrate skills in
quantitative data analysis
techniques | Understand the difference between nominal/categorical, ordinal and interval variables Understand and apply 3 basic categories of descriptive statistics (distribution of variables, measures of central tendency, variability and dispersion calculations) Describe which descriptive statistics are most appropriate for nominal/categorical, ordinal and interval variables | ### **Learning Outcome** - Communicate project knowledge with accuracy and credibility to a target audience. - Develop project planning, implementation and evaluation skills ## THE PROJECTS (EXAMPLES) - <u>Dalhousie Bike Share Program: Exploring the potential for a bike share program at Dalhousie University</u> - Voluntary Carbon Offsets: A Way Forward for the Sustainability Movement at Dalhousie? - <u>Investigating Student-run Co-operatives in North America: Dalhousie Food Co-op</u> Initiative - De-icing Dalhousie: Assessing Salt Management Practices - <u>Dalhousie Photovoice: Identifying Environmental Concerns of the Dalhousie Community on Studley Campus</u> - Retrofitting Showerheads in Dalhousie University Residences: A Cost-Benefit Analysis - <u>Urban Forests: Reintroducing Native Species to Dalhousie University Campus</u> - Policy and Behaviour: Exploring Energy Use by Computers in the Marion McCain Building ### THE BENEFITS - Experiential learning - Team work - Applying concepts - New audience for their scholarly work - Preparation for independent research projects ### THE CHALLENGES - Team work - Students with different skills sets - Not enough time (and snow days!)